If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-2z-4=0
a = 1; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*1}=\frac{2-2\sqrt{5}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*1}=\frac{2+2\sqrt{5}}{2} $
| 3.14x49=153.86 | | x=-3x^2–2x+4 | | 6*6*6*6*6*6=6x | | -8p=3-1/4 | | 26c=338 | | 82=-5v-8 | | 15+5x=5x-7 | | -8p=-3,1/4 | | e/3=-5 | | 8k-4k=-12 | | 1/4=a+3/8 | | 6x-56+3x-17=90 | | 100=32x-12(x+5) | | -5(m-6)=8m | | 6x-56+3x-17=180 | | 6x²-3x-4=0 | | 7x-56+3x-17=180 | | x÷0.75=4.8=X | | -2(f+3)=8f-14 | | 5x-30+3x+4=180 | | 5×+7y=57 | | (5x+2)+(6x-10)=90 | | 5x-5-3x+20=125 | | 10+8(2x-4)=8-1x | | 5x-5-3x+20=180 | | –4+h= | | X/5x1=6 | | 5b−6=16. | | 2x-25+75=180 | | 7.50/x=20 | | 1/(2x)-2/(3x)=-3/4 | | 1/(2x)-2/(3x)=(-3/4) |